رياضيات -مكتبة رياضيه متكامله – كتب رياضيات – mathématique
الــجــبــر
:: Algebra ::
ويشمل:
A Computational Introduction To Number Theory And Algebra – Victor Shoups
A course in computational algebraic number theory – Cohen
A Course in Homological Algebra – P. Hilton, U. Stammbach
A Course In Universal Algebra – S. Burris and H.P. Sankappanavar
A First Course In Linear Algebra – Robert A. Beezer
A First Course in Noncommutative Rings – T. Lam
A Primer of Algebraic D-modules – S. Coutinho
Abel’s Theorem in Problems and Solutions – V.B. Alekseev
Abstract Algebra – the Basic Graduate Year – R. Ash
Advanced Modern Algebra – Joseph J. Rotman
Algebra & Trigonometry Graphs & Models 3rd ed – Marvin L. Bittinger
Algebra Abstract – Robert B. Ash
Algebra Demystified – Rhonda Huettenmueller
Algebra I Basic Notions Of Algebra – Kostrikin A I , Shafarevich I R
Algebra Sucsess In 20 Minutes a Day – LearningExpress
Algebraic D-modules – A. Borel et. al
Algebraic Groups and Discontinuous Subgroups – A. Borel, G. Mostow
Algebraic Surfaces and Holomorphic Vector Bundles – R. Friedman
Algorithmic Algebra – B. Mishra
Algorithms for Computer Algebra – K. Geddes, S. Czapor, G. Labahn
An Elementary Approach to Homological Algebra – L. Vermani
An Introduction To Linear Algebra – Kenneth Kuttler
Applications of Abstract Algebra with MAPLE – R. Klima, N. Sigmon, E. Stitzinger
Applied Linear Algebra And Matrix Analysis – Thomas S. Shores
Applied Numerical Linear Algebra – James W. Demmel
Bialgebraic Structures – W. Kandasamy
Calculus approach to matrix eigenvalue algorithms – Hueper
Commutative Algebra 2nd ed. – H. Matsumura
Commutative Ring Theory – H. Matsumura
Compact Numerical Methods for Computers Linear Algebra and Function Minimisation 2Ed – Adam Hilger
Computational Commutative Algebra – Kreuzer and Robbiano
Computer Algebra and Differential Equations – E. Tournier
Determinants and Their Applications in Mathematical Physics – R. Vein, P. Dale
Differential Galois Theory – M. van der Put, M. Singer
Elementary Linear Algebra – K. R. MATTHEWS
Elements of Abstract and Linear Algebra – E. H. Connell
Fileds and Galois Theory [jnl article] – J. Milne
fundamental problems in algorithmic algebra – chee keng yap
Galois Theory 2nd ed. – E. Artin
Group Characters, Symmetric Functions and the Hecke Algebras – D. Goldschmidt
Handbook of Algebra Vol 1 – M. Hazewinkel
Handbook of Algebra Vol 2 – M. Hazewinkel
Hankel and Toeplitz Matrices and Forms – I. Iohvidov
Homotopical Algebra – D. Quillen
Intro Abstract Algera – P.Garret
Introduction to Commutative Algebra – M. Atiyah, I. Macdonald
Invitation to Higher Local Feilds – I. Fesenko, M. Kurihara
Lectures on Matrices – wedderburn
Linear Algebra – Jim Hefferon
Linear algebra 3ed – Greub, W.H
Linear Algebra And Its Applications – David C Lay
Linear Algebra and Its Applications 3e – Gilbert Strang
Linear Algebra and Multidimensional Geometry – R. Sharipov
LINEAR ALGEBRA and SMARANDACHE LINEAR ALGEBRA – w. b. vasantha kandasamy
Linear Algebra Done Right, 2nd Ed – ****don Axler
Linear Algebra Gateway to Mathematics – Robert Messer
Linear Algebra with Applications 3rd Edition – Nicholson, W. Keith
Linear Algebra, 2Nd Edition – Kenneth Hoffmann And Ray Kunze
Linear algebraic groups 2ed – Borel A
Logic and Boolean Algebra – Kathleen and Hilbert Levitz
Matrices Over Commutative Rings – W. Brown
Matrices theory and applications – Serre D.
Matrix Analysis & Applied Linear Algebra – Carl D Meyer
Matrix Theory – [jnl article] – T. Banks
Methods of Homological Algebra – S. Gelfand, Y. Manin
Modern Algebra With Applications 2Ed – Gilbert, Nicholson
Modern Computer Algebra – Von Zur Gathen, Gerhard
Operator Algebras and Quantum Statistical Mechanics V1 2nd ed. – O. Bratelli.djv
Operator Algebras and Quantum Statistical Mechanics V2 2nd ed. – O. Bratelli.djv
Polynomials and Polynomial Inequalities
Quadratic Forms and their Applications
Ring of Quotients – Introduction to Methods of Ring Theory – Bo Stenstrom
SCHAUM’S OUTLINE OF THEORY AND PROBLEMS OF LINEAR ALGEBRA Second Edition – SEYMOUR LIPSCHUTZ
Schemes – D. Eisenbud, J. Harris
SMARANDACHE FUZZY ALGEBRA – W. B. Vasantha Kandasamy
Smarandache Loops – W. Kandasamy
Smarandache Near-Rings – W. Kandasamy
Smarandache Rings – W. Kandasamy
Smarandache Semirings, Semifields,Semi Vector Spaces – W. Kandasamy
Structure and Representation of Jordan Algebras – N. Jacobson
The Algebraic Theory of Spinors and Clifford Algebras – C. Chevalley
The Theory Of Algebraic Numbers 2nd ed. – H. Pollard, H. Diamond
Toposes, Triples and Theories – M. Barr, W. Wells
Treatise on Quantum Clifford Algebras – Fauser
Vector Math for 3D Computer Graphics – Interactive Tutorial
Workbook in Higher Algebra – David Surowski
× × × ×
روابط التحميل:
الـهـنـدسـة الــجــبــريــة
:: Analysis::
A Course of Higher Mathematics vol 1 – V. Smirnov.djv
A Course of Higher Mathematics vol 2 – V. Smirnov.djv
A Course of Modern Analysis 4th ed. – E. Whittaker, G. Watson.djv
A Quick Introduction to Tensor Analysis – R. Sharipov
Acourse of pure mathematics – Hardy
Algebraic Numbers and Fourier Analysis – Salem
An Introduction to Complex Analysis for Engineers – M. Adler
An Introduction To Functional Analysis – Vitali Milman
An Introduction to Numerical Analysis for Electrical and Computer Engineers – Wiley
Analysis – Hyland
Analysis and Simulation of Chaotic Systems 2nd ed. – F. Hoppensteadt
Applied and Computational Complex Analysis Vol 1 – P. Henrici
Applied and Computational Complex Analysis Vol 2 – P. Henrici
Applied Nonlinear Analysis – A. Sequeira, H. da Vega, J. Videman.djv
Automorphic Forms on GL(2) – H. Jacquet, R. Langlands
Automorphic Forms, Representations and L-Functions Part 1 – A. Borel, W. Casselman
Automorphic Forms, Representations and L-Functions Part 2 – A. Borel, W. Casselman
Basic Analysis – K. Kuttler
Basic Elements of Real Analysis – M. Protter
Basic Math Conecpts – E. Zakon
Complex Analysis – Ahlfors
Complex Analysis – cain
Complex Analysis – K. Houston
Complex Analysis 2nd ed. – L. Alhford
Computer Analysis of Number Sequences – H. Ibstedt
Convex Analysis and Non Linear Optimization Theory and Examples – Borwein,Lewis
Differential Inequalities – J. Szarski.djv
Elementary Numerical Analysis An Algorithmic Approach, 3rd Ed – de Boor
Finite Element Analysis Theory and Application with ANSYS – S. Moaveni
Foundations of Algebra and Analysis – C. Dodge
Foundations of modern analysis – Friedman
Foundations of Real and Abstract Analysis – Axler , Gehring , Ribet
Fourier analysis on groups – Rudin, Walter
Fourier Theory – B. Clarke
Functional Analysis – K Yoshida
Functional Analysis – W. Rudin
Functional Analysis and Semi-Groups – E. Hille, R. Phillips
Functional Equations in a Single Variable – M. Kuczma.djv
Functional Operators, Vol.1 – Measures and Integrals – J. von Neumann
Functions of One Complex Variable 2nd ed. – J. Conway
Fundamental Numerical Methods and Data Analysis – G. W. Collins
Harmonic Analysis And Partial Differential Equations – B. Dahlberg, C. Kenig
Harmonic Analysis on Semisimple Lie Groups – V. Varadarajan.djv
Harmonic Analysis, Real Variable Methods Orthogonality & Oscillatory Integrals – Stein
Homeomorphisms in Analysis – C. Goffman, T. Nishiura, D. Waterman.djv
Integral Equations – A Practical Treatment – D. Porter, D. Stirling.djv
Integral Equations – H. Hochstadt.djv
Introduction to Complex Analysis – R. Nevanlinna, V. Paatero
Introduction to Complex Analysis Lecture notes – W. Chen
Introduction to Numerical Analysis 2 ed – J.Stoer,R.Bulirsch
Introduction To p-adic Numbers and p-adic Analysis – A. Baker
Introduction to the theory of Fourier’s series and integrals 2ed- Carslaw H.S.
Introductory Real Analysis – A. Kolmogorov, S. Fomin
Manifolds, Tensor Analysis and Applications 3rd ed. – Marsden, Ratiu and Abraham
Mathematical analysis – Apostol T.M.
Mathematical Analysis – E. Zakon
Mathematical Methods of Engineering Analysis – E. Cinlar, R. Vanderbei
Mathematics of the Discrete Fourier Transform
Means of Hilbert Space Operators – F. Hiai, H. Kosaki
Measure And Integral an introduction to Real analysis – Wheeden and Zygmund,
Mixed Motives – M. Levine
Monotone Operators in Banach Space and Nonlinear partial differential equation – P. Showalter
Nonlinear System Theory – W. Rugh
Notions of Convexity – L. Hoermander
p-adic numbers, p-adic analysis, and zeta-functions 2nd ed. – N. Koblitz
Partial Differantial Equations and Fourier Analysis an Introduction – K. Tung
Principles and Applications of Tensor Analysis – M. Smith
Principles of Mathematical Analysis 3ed – Rudin W
Real And Complex Analysis International Student edn – W. Rudin
Real and complex analysis third edition – Rudin
Real Mathematical Analysis- Charles Chapman
Summation of Series 2nd rev. ed. – L. B. W. Jolley
The Elements of Real Analysis – R. Bartle
The Theory Of The Riemann Zeta-Function -Titshmarch
theory and Problems Of Fourier Analysis with Applications to Boundary value problems – Spiegel
Theory of Functions of a Real Variable – S. Sternberg
Vector and Tensor Analysis with Applications – A. Borisenko and I.Tarapov.djv
× × × ×
روابط التحميل: